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How	to	solve	sampling	gaps	and	extract	high-level	 information	 for	
ocean	monitoring	and	surveillance	?

General	question

Remote	sensing Physical	modeling

Deep	learning
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Context:	No	observation	/	simulation	system	to	resolve	all	
scales	and	processes	simultaneously

NATL	60

SAR

SMOS

Ocean	Colour

SWOT

altimeters



Learning	 for	 partially-observed	 systems	 /	 from	
irregularly-sampled	data	?

Scarce	time	sampling
Noisy	and	irregular	sampling

(From	Perez	et	al.,	2018)
Ouala,	ICASSP’19

Fablet,	arXiv’2020	
Nguyen,	ICASSP’20	

Partially-observed	
system	

Ouala,	preprint	2019



Briding Physics and Deep Learning 



Examples	of	DL	schemes	applied	to	physics-related	issues		



An	example	of	deep	learning	for	inverse	problems	
(Lguensat	et	al.,	2020)

Partial	observations	y

True	states	x

Direct	learning	for	inverse	problems: CNN

…….

CNN

Examples	of	CNN	architectures:	classic	CNN	architectures,	architectures	derived	from	

inver	 problem	 algorithms,	 eg	 Reaction-Diffusion	 architectures,	 ADMM-inspired	

architectures,…		

Good	 performance	 but	 possibly	 weak	 interpretability/generalization	 capacities	 of	
the	solution	byeond	the	training	cases	

May	reinvent	the	wheel	and	forget	to	exploit	the	available	(physical)	knowledge

Lguensat	etal.,	2020



Bridging	 Deep	 Learning	 and	 Variational	
Data	Assimilation	



Starting	from	a	(Weak	constraint)	4DVar	Data	Assimilation	
(DA)	formulation

Partial	observations	y

True	states	x

State-space	formulation:	

Associated	variational	formulation:	

	

with



Bridging	4DVar	DA	and	Deep	Learning	[Fablet	et	al.,	2020]

Partial	observations	y

True	states	x

Model-driven	schemes:	

Gradient-based	solver	(adjoint/Euler-Lagrange	method):	

Possibly	 implemented	within	 a	DL	 framework	 to	benefit	
from	 automatic	 differentiatio	 tools	 to	 design	 gradient-
based	solver	



	Bridging	4DVar	DA	and	Deep	Learning	(Fablet	et	al.,	2020)

Partial observations y

True states x

Model-driven schemes: 

Direct learning for inverse problems: CNN

Proposed scheme: joint learning of the variational model and solver 
• Theoretical bi-level optimization 



Bridging	4DVar	DA	and	Deep	Learning	(Fablet	et	al.,	2020)

Partial observations y

True states x

Model-driven schemes: 

Direct learning for inverse problems: CNN

Proposed scheme: joint learning of the variational model and solver 
• Theoretical bi-level optimization 

• Restated with a gradient-based NN solver for inner minimization
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I terat ive NN solver using automatic 
differentiation to compute gradient  



Bridging	4DVar	DA	and	Deep	Learning	(Fablet	et	al.,	2020)

Observation data y, !

Reconstructed states x

Proposed scheme: associated NN architecture 
Initial state x(0) ResNet architecture

RU RU RU

Residual Unit (RU)

(….)

Automatic 
differentiation

NN model for

RNN cell (eg, LSTM)



End-to-end	learning	for	4DVar	DA:	projection operator   

Parameterization 
using (learnable) 

ODE operator

Neural integrator

U-Net
Two-scale  
U-Net-like 

Parameterization 
(Gibbs Field)



End-to-end	learning	for	inverse	problems	(Fablet	etal.,	2020)

Illustration on Lorenz-96 dynamics (Bilinear ODE) 

Learned model

True ODE Non-supervised setting 
(classic variational minimisation)

Supervised settings



An	example	for	upcoming	SWOT	mission

(From	Perez	et	al.,	2018)

Groundtruth

State-of-the-art	
operational	processing

Proposed	NN	framework	
(Fablet	et	al.,	2019)

Beauchamp	et	al.,	2020	
https://doi.org/10.3390/rs12223806



End-to-end	learning	for	inverse	problems	(Fablet	et	al.,	2020)

Key messages 

• We can bridge DNN and variational 
models to solve inverse problems 

• Learning both variational priors and 
solvers using groundtruthed (simulation) 
or observation-only data 

• The best model may not be the TRUE 
one for inverse problems 

• Generic formulation/architecture beyond 
space-time dynamics 

Preprint: https://arxiv.org/abs/2006.03653 

Code: https://github.com/CIA-Oceanix 



End-to-end	learning	from	real	observation	data	?

Scarce	time	sampling
Noisy	and	irregular	sampling

(From	Perez	et	al.,	2018)

Ouala,	ICASSP’19 Nguyen,	ICASSP’20

Partially-observed	
system	

Ouala,	preprint	2019



Neural	ODE	for	partially-observed	systems	[Ouala	et	al.,	2020]

X1 Learning	Latent	(unobserved)	
dynamics

Objectives:	acccurate	
short-term	forecast	and	

realistic	«	long-term	»	

patterns	for	X1

Illustration	for	L63	assuming	only	the	first	components	is	observed

Approach:	trainable	
variational	formulation	

with	latent	dynamics



Neural	ODE	for	partially-observed	systems	[Ouala	et	al.,	2019]

Problem	 statement:	 end-to-end	 learning	 of	 the	 latent	 (augmented)	
space	and	of	the	associated	dynamics	

Observed	
variables

Unknown	
variables

Dynamical	 model	 in	 the	
latent	space

Goals:		
1. Learn	model	parameters	θ	from	observed	time	series	
2. Forecast	future	observed	states	given	previous	ones	

Proposed	 approach:	WC	 4DVar	 formulation	 with	 an	 unknown	 dynamical	

model	



Neural	ODE	for	partially-observed	systems	[Ouala	et	al.,	2020]

Illustration	on	Lorenz-63	dynamics	

Analog	Forecasting

Proposed	model



Summary	

• NNs	 as	 numerical	 schemes	 for	 ODE/PDE/energy-based	
representations	of	geophysical	flows	(ie,	not	only	Black	Boxes)	

• Embedding	 geophysical	 priors	 in	 NN	 representations	 (e.g.,	
Lguensat	et	al.,	2019;	Ouala	et	al.,	2019)	

• End-to-end	 learning	 of	 (latent)	 representations	 (eg,	 ODE)	
and	solvers	(e.g.,	Fablet	et	al.,	2020;	Ouala	et	al.,	2020)		

• Towards	 stochastic	 representations	 embedded	 in	 NN	
architectures	(e.g.,	Pannekoucke	et	al.,	2020,	Nguyen	etal.,	2020)



Making	the	most	of	model-driven	and	data-driven	approaches	
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Model-
driven 

Data-
driven 

Data-driven & 
Physics-aware 

Physics-informed & 
Data-constrained 

Neural Networks 
(Analog methods) 
(Kernel methods) 

…..

ODEs/PDEs 
Variational models 
State-space models 
Data Assimilation 

….

Link	to	

animation

++	
Use	of	prior	knowledge	

Interpretability	

Generalization	

-	-		
Flexibility	

Use	of	observation		

dataset

++	
Flexibility	

Plug-and-play	

GPU	acceleration	

-	-		
Black-box	

Generalization	

Interpretability	

Reinvent	the	wheel	



AI	Chair	OceaniX	2020-2024 

Physics-informed	 AI	 for	 Observation-

Driven	Ocean	AnalytiX	

PI:	R.	Fablet,	Prof.	IMT	Atlantique,	Brest	

Web:	https://cia-oceanix.github.io/

24

Thank	you.

Internship,	PhD	
and	postdoc	
opportunities	


